If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+32u-64=0
a = 5; b = 32; c = -64;
Δ = b2-4ac
Δ = 322-4·5·(-64)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-48}{2*5}=\frac{-80}{10} =-8 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+48}{2*5}=\frac{16}{10} =1+3/5 $
| V^2+9v-12=10 | | t=82−9 | | g=25+14 | | x+3-x=2x-7 | | -16y+52=20 | | 5(c+13)+6=61 | | 26+7p=82 | | 5b-1-2=5b+5 | | x/11/5=2/17 | | z=8+8*3^-0,5 | | a÷3+1=15 | | 175=5(8b+3) | | (90(.3))+(91.43(.3))+(x(.4))=93 | | 2g=48=18-g | | 2x-4.5=1/2(x+3) | | 3x+8=24+x | | 5,7+1.6n=1.38 | | 4(a-2)=3(a+40 | | X+.7(x)=365 | | |7x-4|+3=1 | | 2-3x/5x-8=2/6 | | (x+4)2=4x+52+4x | | 4/9z-1=5/9z+2 | | 3(2x-3)=2x+8 | | 0.5(4x-6)+2x=3x-8 | | 2(3x-5)=4x+2 | | 23+5z=-7+11z | | -3x+2x=8 | | 18x+4+70+9x-3=180 | | 25=8u-3u | | 2(4x+9)=14x | | 8-3x=-5x+4 |